Part Number Hot Search : 
FR207 AO443511 OPB824A BLX94 FRS1M ACT711S C5000 20KW160
Product Description
Full Text Search
 

To Download V23990-P768-A50 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  V23990-P768-A50-pm flow2 1200v/50a 3~rectifier,brc,inverter, ntc very compact housing, easy to route mitsubishi igbt and fwd motor drives power generation V23990-P768-A50 t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 80 t c =80c 80 t h =80c 95 t c =80c 144 maximum junction temperature t j max 150 c inverter transistor t h =80c 60 t c =80c 77 t h =80c 155 t c =80c 235 t sc t j 150c 10 s v cc v ge =15v 850 v p tot gate-emitter peak voltage w dc forward current surge forward current power dissipation per diode flow2 target applications schematic maximum ratings types i2t-value t j =t j max features i fav i fsm condition input rectifier diode a a p tot i 2 t 490 t j =150c 1200 t j =t j max t p =10ms a 2 s pulsed collector current power dissipation per igbt maximum junction temperature collector-emitter break down voltage dc collector current t j max turn off safe operating area short circuit ratings t p limited by t j max 20 a v c w a 100 vce 1200v, tj top max 175 100 a v 1200 v ce i c t j =t j max t j =t j max v ge i cpulse copyright vincotech 1 revision: 1
V23990-P768-A50-pm t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition inverter diode t h =80c 82 t c =80c 106 t h =80c 126 t c =80c 191 brake transistor t h =80c 45 t c =80c 56 t h =80c 137 t c =80c 208 t sc t j 150c 10 s v cc v ge =15v 800 v brake inverse diode t h =80c 16 t c =80c 16 t h =80c 69 t c =80c 98 brake diode t j =25c 1200 t h =80c 28 t c =80c 35 t h =80c 72 t c =80c 109 i f t j =t j max 20 1200 70 peak repetitive reverse voltage i frm maximum junction temperature peak repetitive reverse voltage i frm v rrm w a a t p limited by t j max 50 maximum junction temperature t j max 175 t j =t j max t p limited by t j max dc forward current v ge c c v 175 w a t j =t j max a t p limited by t j max power dissipation per diode p tot t j =t j max t j =t j max dc forward current i f repetitive peak forward current brake inverse diode repetitive peak forward current maximum junction temperature peak repetitive reverse voltage i frm p tot i f repetitive peak forward current power dissipation per diode v ce 1200v, tj top max 135 i cpuls t p limited by t j max collector-emitter break down voltage pulsed collector current v ce c 20 v t j max t j =t j max i c a p tot gate-emitter peak voltage t j =t j max short circuit ratings turn off safe operating area dc collector current power dissipation per igbt maximum junction temperature t j max t c =25c v rrm dc forward current p tot a w 175 v 100 1200 t j =25c t j max t j =t j max v rrm a c a v 175 w a 1200 v copyright vincotech 2 revision: 1
V23990-P768-A50-pm t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition thermal properties insulation properties v is t=2s dc voltage 4000 v min 12,7 mm min 12,7 mm cti >200 comparative tracking index insulation voltage creepage distance t op operation temperature under switching condition clearance c -40+125 c -40+(tjmax - 25) storage temperature t stg copyright vincotech 3 revision: 1
V23990-P768-A50-pm parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 1 1,1 1,8 tj=125c 1,05 tj=25c 0,89 tj=125c 0,78 tj=25c 4 tj=125c 5 tj=25c 0,1 tj=125c thermal resistance chip to heatsink per chip r thjh 0,74 thermal resistance chip to heatsink per chip r thjc 0,49 tj=25c 5,4 6 6,6 tj=150c tj=25c 1,4 1,80 2,3 tj=150c 2,18 tj=25c 300 tj=150c tj=25c 500 tj=150c tj=25c 65,4 tj=150c 64,8 tj=25c 9,8 tj=150c 11,6 tj=25c 137 tj=150c 189 tj=25c 58,6 tj=150c 99,8 tj=25c 1,994 tj=150c 3,311 tj=25c 2,564 tj=150c 4,317 thermal resistance chip to heatsink per chip r thjh 0,61 thermal resistance chip to case per chip r thjc 0,41 tj=25c 1,4 1,21 2,2 tj=150c 1,2 tj=25c 80 tj=150c 81 tj=25c 156 tj=150c 470 tj=25c 6,95 tj=150c 12,53 di(rec)max tj=25c 4237 /dt tj=150c 1162 tj=25c 3,314 tj=150c 6,025 thermal resistance chip to heatsink per chip r thjh 0,75 thermal resistance chip to case per chip r thjc 0,5 tj=25c a v mws ns v n s a/s mws k/w a nc na k/w pf v 5000 none phase-change material 10 10 gate emitter threshold voltage collector-emitter cut-off current incl. diode fall time turn-off delay time turn-on delay time rise time gate-emitter leakage current integrated gate resistor reverse recovery time reverse recovered energy peak rate of fall of recovery current reverse recovered charge peak reverse recovery current 0 reverse transfer capacitance diode forward voltage gate charge inverter diode v ce =v ge c ies q gate erec phase-change material 1000 117 80 c 50 reverse current i r 1500 50 v v m ma k /w slope resistance (for power loss calc. only) v f v to r t 50 50 conditions characteristic values forward voltage threshold voltage (for power loss calc. only) input rectifier diode v alue inverter transistor c oss c rss q rr t rr i rrm v f turn-on energy loss per pulse input capacitance output capacitance turn-off energy loss per pulse collector-emitter saturation voltage v ge(th) v ce(sat) e on e off t f i ces r gint i ges t d(on) t r t d(off) 15 rgon=8 600 5 0 0,005 50 1200 tj=25c 50 50 rgoff=8 rgon=8 15 1 5 f=1mhz 600 0 20 0 phase-change material 15 600 copyright vincotech 4 revision: 1
V23990-P768-A50-pm parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max conditions characteristic values value tj=25c 5 5,8 6,5 tj=150c tj=25c 1,5 1,92 2,3 tj=150c 2,37 tj=25c 250 tj=150c tj=25c 120 tj=150c none tj=25c 82,8 tj=150c 89 tj=25c 27 tj=150c 27 tj=25c 191,4 tj=150c 269 tj=25c 54,3 tj=150c 124,9 tj=25c 2 tj=150c 2,92 tj=25c 1,74 tj=150c 3,18 thermal resistance chip to heatsink per chip r thjh 0,69 thermal resistance chip to case per chip r thjc 0,46 tj=25c 1,2 1,80 2,2 tj=150c 1,76 thermal resistance chip to heatsink per chip r thjh 1,38 thermal resistance chip to case per chip r thjc 0,91 tj=25c 1 2,24 2,9 tj=150c 2,36 tj=25c 60 tj=150c tj=25c 30,8 tj=150c 39,2 tj=25c 146,4 tj=150c 423,1 tj=25c 2,32 tj=150c 4,84 di(rec)max tj=25c 1749 /dt tj=150c 917 tj=25c 0,91 tj=150c 1,98 thermal resistance chip to heatsink per chip r thjh 1,32 thermal resistance chip to case per chip r thjc 0,87 960 160 155 25 35 0,0012 600 rgon=16 1200 1 200 600 25 35 15 20 brake diode diode forward voltage r everse leakage current i r v f i rrm rgon=16 peak reverse recovery current r everse recovery energy t rr q rr e rec reverse recovery time reverse recovered charge peak rate of fall of recovery current phase-change material phase-change material 15 10 0 3 5 15 15 0 35 115 0 phase-change material i ges 1950 ns pf mws na rgon=16 rgoff=16 f=1mhz c ies e on r gint v ce =v ge c oss reverse transfer capacitance output capacitance v f c rss diode forward voltage brake inverse diode gate charge t d(on) t r t d(off) e off q gate turn-on energy loss per pulse turn-off energy loss per pulse t f fall time integrated gate resistor turn-off delay time collector-emitter saturation voltage rise time turn-on delay time input capacitance gate-emitter leakage current v ge(th) brake transistor gate emitter threshold voltage i ces collector-emitter cut-off incl diode v ce(sat) tj=25c tj=25c v a k /w mws nc v v v a k/w ns a/s c k/w a copyright vincotech 5 revision: 1
V23990-P768-A50-pm parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max conditions characteristic values value t=25c t=25c t=25c t=25c thermistor power dissipation constant p ower dissipation p deviation of r100 ? r/r r100=1486 mw r ated resistance r mw/k 3,5 210 +4,5 -4,5 21511 % k t =25c 3884 k 3964 b (25/100) t=25c b-value b (25/50) vincotech ntc reference b-value f thermal resistance, case to heatsink r thch tbd. k/w module properties m 5 nh t bd. chip module lead resistance, terminals -chip r cc'1+ee' module stray inductance l sce tbd. 4 4,2 7 7,4 nm terminal connection torque m 6,7 mounting torque m 3,8 g nm weight g copyright vincotech 6 revision: 1
V23990-P768-A50-pm figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 150 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 o utput inverter igbt figure 4 output inverter fwd typical transfer characteristics t ypical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t j = 25 / 150 c t p = 250 s t p = 250 s v ce = 10 v output inverter typical output characteristics 0 25 50 75 100 125 150 0 1 2 3 4 5 v ce (v) i c (a) 0 10 20 30 40 50 0 2 4 6 8 10 12 14 v ge (v) i c (a) 0 25 50 75 100 125 150 0 0,5 1 1,5 2 2,5 3 v f (v) i f (a) 0 25 50 75 100 125 150 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 7 revision: 1
V23990-P768-A50-pm figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses t ypical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25 / 150 c t j = 25 / 150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 8 i c = 50 a r goff = 8 figure 7 o utput inverter fwd figure 8 output inverter fwd typical reverse recovery energy loss t ypical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25 / 150 c t j = 25 / 150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 8 i c = 50 a output inverter e on high t e off high t e on low t e off low t 0 2 4 6 8 10 0 20 40 60 80 100 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 2 4 6 8 10 0 8 16 24 32 40 r g ( w ) e (mws) e rec e rec 0 2 4 6 8 10 0 20 40 60 80 100 i c (a) e (mws) e rec e rec 0 2 4 6 8 10 0 8 16 24 32 40 r g ( w ) e (mws) copyright vincotech 8 revision: 1
V23990-P768-A50-pm figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a t ypical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 150 c t j = 150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 8 i c = 50 a r goff = 8 figure 11 o utput inverter fwd figure 12 output inverter fwd typical reverse recovery time as a t ypical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(i c ) t rr = f(r gon ) at at t j = 25 / 150 c t j = 25 / 150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 50 a r gon = 8 v ge = 15 v output inverter t doff t f t don t r 0,00 0,01 0,10 1,00 0 20 40 60 80 100 i c (a) t ( m s) t rr t rr 0 0,2 0,4 0,6 0,8 1 1,2 0 8 16 24 32 40 r gon ( w ww w ) t rr ( m s) t doff t f t don t r 0,00 0,01 0,10 1,00 0 8 16 24 32 40 r g ( w ww w ) t ( m s) t rr t rr 0 0,2 0,4 0,6 0,8 1 1,2 0 20 40 60 80 100 i c (a) t rr ( m s) copyright vincotech 9 revision: 1
V23990-P768-A50-pm figure 13 output inverter fwd figure 14 output inverter fwd typical reverse recovery charge as a t ypical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at at t j = 25 / 150 c t j = 25 / 150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 50 a r gon = 8 v ge = 15 v figure 15 o utput inverter fwd figure 16 output inverter fwd typical reverse recovery current as a t ypical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 25 / 150 c t j = 25 / 150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 50 a r gon = 8 v ge = 15 v output inverter i rrm i rrm 0 40 80 120 160 200 0 8 16 24 32 40 r gon ( w ww w ) i rrm (a) q rr q rr 0 4 8 12 16 20 0 8 16 24 32 40 r gon ( w ) q rr ( m c) i rrm i rrm 0 40 80 120 160 200 0 20 40 60 80 100 i c (a) i rrm (a) q rr q rr 0 4 8 12 16 20 0 20 40 60 80 100 i c (a) q rr ( m c) copyright vincotech 10 revision: 1
V23990-P768-A50-pm figure 17 output inverter fwd figure 18 output inverter fwd typical rate of fall of forward t ypical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c ) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25 / 150 c t j = 25 / 150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 50 a r gon = 8 v ge = 15 v figure 19 o utput inverter igbt figure 20 output inverter fwd igbt transient thermal impedance f wd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 0,61 k/w rthjh = 0,60 k/w r thjh = 0,75 k/w rthjh = 0,73 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) 0,04 4,0e+00 0,04 3,9e+00 0,04 3,7e+00 0,04 3,6e+00 0,05 7,8e-01 0,05 7,6e-01 0,07 5,6e-01 0,06 5,5e-01 0,13 1,5e-01 0,12 1,5e-01 0,21 9,7e-02 0,21 9,4e-02 0,26 4,5e-02 0,25 4,4e-02 0,31 2,9e-02 0,30 2,8e-02 0,08 1,3e-02 0,08 1,2e-02 0,07 6,0e-03 0,07 5,8e-03 0,03 1,4e-03 0,03 1,3e-03 0,05 6,6e-04 0,05 6,4e-04 0,02 3,8e-04 0,00 0,0e+00 output inverter psx7p phase change interface psx7p phase change interface t p (s) z thjh (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z th-jh (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di rec /dt high t di rec /dt 0 5000 10000 15000 20000 25000 0 8 16 24 32 40 r gon ( w ww w ) di rec / dt (a/ m s) di o /dt low t di 0 /dt high t di 0 /dt di rec /dt low t di 0 /dt high t di rec /dt high t di rec /dt low t di o /dt low t 0 2000 4000 6000 8000 10000 0 10 20 30 40 50 60 70 80 90 100 i c (a) di rec / dt (a/ m m m m s) di rec /dt di 0 /dt copyright vincotech 11 revision: 1
V23990-P768-A50-pm figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a c ollector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 175 c t j = 175 c v ge = 15 v figure 23 o utput inverter fwd figure 24 output inverter fwd power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 175 c t j = 175 c output inverter 0 50 100 150 200 250 300 350 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 60 70 80 90 0 50 100 150 200 t h ( o c) i c (a) 0 50 100 150 200 250 300 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 60 70 80 90 100 110 120 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 12 revision: 1
V23990-P768-A50-pm figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function g ate voltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q ge ) at at d = single pulse i c = 50 a t h = 80 oc t j = 25 oc v ge = 15 v t j = t jmax oc figure 27 o utput inverter igbt figure 28 output inverter igbt short circuit withstand time as a function of typical short circuit collector current as a function of gate-emitter voltage gate-emitter voltage t sc = f(v ge ) v ge = f(q ge ) at at v ce = 1200 v v ce 800 v t j 175 oc t j = 150 oc output inverter v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10ms 100ms dc 10 0 10 3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 0 50 100 150 200 q g (nc) v ge (v) 600v 0 2,5 5 7,5 10 12,5 15 17,5 20 22,5 12 13 14 15 16 17 18 19 20 v ge (v) t sc (s) 0 1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20 v ge (v) i c (sc)/i c n copyright vincotech 13 revision: 1
V23990-P768-A50-pm figure 29 igbt reverse bias safe operating area i c = f(v ce ) at t j = 150 c rgon = 8 rgoff = 8 0 20 40 60 80 100 120 0 200 400 600 800 1000 1200 1400 v ce (v) i c (a) i c max v ce max i c module i c chip copyright vincotech 14 revision: 1
V23990-P768-A50-pm figure 1 brake igbt figure 2 brake igbt typical output characteristics t ypical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 150 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 b rake igbt figure 4 brake fwd typical transfer characteristics t ypical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t j = 25 / 150 c t p = 250 s t p = 250 s v ce = 10 v brake 0 20 40 60 80 100 0 1 2 3 4 5 v ce (v) i c (a) 0 5 10 15 20 25 30 35 0 2 4 6 8 10 12 14 v ge (v) i c (a) 0 15 30 45 60 75 0 0,8 1,6 2,4 3,2 4 4,8 v f (v) i f (a) 0 20 40 60 80 100 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 15 revision: 1
V23990-P768-A50-pm figure 5 brake igbt figure 6 brake igbt typical switching energy losses t ypical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25 / 150 c t j = 25 / 150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 16 i c = 35 a r goff = 16 figure 7 b rake fwd figure 8 brake fwd typical reverse recovery energy loss t ypical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25 / 150 c t j = 25 / 150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 16 i c = 35 a brake e rec e rec 0 0,5 1 1,5 2 2,5 3 0 10 20 30 40 50 60 70 i c (a) e (mws) e rec e rec 0 0,5 1 1,5 2 2,5 3 0 16 32 48 64 80 r g ( w ww w ) e (mws) e off e on e on e off 0 1,5 3 4,5 6 7,5 9 0 10 20 30 40 50 60 70 i c (a) e (mws) e off e on e on e off 0 1,5 3 4,5 6 7,5 9 0 16 32 48 64 80 r g ( w ww w ) e (mws) copyright vincotech 16 revision: 1
V23990-P768-A50-pm figure 9 brake igbt figure 10 brake igbt typical switching times as a t ypical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 150 c t j = 150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 16 i c = 35 a r goff = 16 figure 11 b rake igbt figure 12 brake fwd igbt transient thermal impedance f wd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at d = tp / t at d = tp / t r thjh = 0,692 k/w r thjh = 0,67 k/w r thjh = 1,32 k/w r thjh = 1,28 k/w psx7p phase change interface brake phase change interface psx7p t doff t f t don t r 0,001 0,01 0,1 1 0 10 20 30 40 50 60 70 i c (a) t ( m s) t doff t f t don t r 0,001 0,01 0,1 1 0 16 32 48 64 80 r g ( w ww w ) t ( m s) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 copyright vincotech 17 revision: 1
V23990-P768-A50-pm figure 13 brake igbt figure 14 brake igbt power dissipation as a c ollector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 175 oc t j = 175 oc v ge = 15 v figure 15 b rake fwd figure 16 brake fwd power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 175 oc t j = 175 oc brake 0 50 100 150 200 250 300 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 60 70 0 50 100 150 200 t h ( o c) i c (a) 0 20 40 60 80 100 120 140 0 50 100 150 200 th ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 18 revision: 1
V23990-P768-A50-pm figure 1 brake inverse diode figure 2 brake inverse diode typical diode forward current as d iode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at d = tp / t t j = 25 / 150 c t p = 250 s r thjh = 1,38 k/w r thjh = 1,34 k/w figure 3 b rake inverse diode figure 4 brake inverse diode power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 150 oc t j = 150 oc psx7p phase change interface brake inverse diode 0 5 10 15 20 25 30 0 0,8 1,6 2,4 3,2 4 v f (v) i f (a) t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 20 40 60 80 100 120 140 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 19 revision: 1
V23990-P768-A50-pm figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as d iode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t j = 25 / 125 c d = t p / t t p = 250 s r thjh = 0,74 k/w figure 3 r ectifier diode figure 4 rectifier diode power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 150 oc t j = 150 oc input rectifier bridge 0 25 50 75 100 125 150 0 0,8 1,6 2,4 3,2 4 v f (v) i f (a) t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 50 100 150 200 250 300 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 60 70 80 90 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 20 revision: 1
V23990-P768-A50-pm figure 1 thermistor figure 2 thermistor typical ntc characteristic t ypical ntc resistance values as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 4000 8000 12000 16000 20000 24000 25 50 75 100 125 t (c) r/  [ ] w = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - 25 1 00/25 11 2 5 )( tt b ertr copyright vincotech 21 revision: 1
V23990-P768-A50-pm t j 150 c r gon 8  r goff 8  figure 1 o utput inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of tdon, t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = -15 v v ge (0%) = -15 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 50 a i c (100%) = 50 a t doff = 0,19 s t don = 0,07 s t eoff = 0,72 s t eon = 0,25 s figure 3 o utput inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 50 a i c (100%) = 50 a t f = 0,10 s t r = 0,01 s switching definitions output inverter general conditions = = = i c 1% v ce 90% v ge 90% -20 0 20 40 60 80 100 120 140 -0,2 0 0,2 0,4 0,6 0,8 time (us) % t doff t eoff v ce i c v ge i c10% v ge10% t don v ce 3% -50 0 50 100 150 200 250 300 2,7 2,9 3,1 3,3 3,5 3,7 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -20 0 20 40 60 80 100 120 140 0 0,08 0,16 0,24 0,32 0,4 time (us) % v ce i c t f i c10% i c90% -50 0 50 100 150 200 250 300 2,9 3 3,1 3,2 3,3 time(us) % t r v ce i c copyright vincotech 22 revision: 1
V23990-P768-A50-pm figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 30,08 kw p on (100%) = 30,08 kw e off (100%) = 4,32 mj e on (100%) = 3,31 mj t eoff = 0,72 s t eon = 0,25 s figure 7 o utput inverter fwd turn-off switching waveforms & definition of t rr v d (100%) = 600 v i d (100%) = 50 a i rrm (100%) = -81 a t rr = 0,47 s switching definitions output inverter i c 1% v ge 90% -20 0 20 40 60 80 100 120 -0,2 0 0,2 0,4 0,6 0,8 time (us) % p off e off t eoff v ce 3% v ge 10% -50 0 50 100 150 200 250 2,9 3 3,1 3,2 3,3 time(us) % p on e on t eon i rrm 10% i rrm 90% i rrm 100% t rr -200 -150 -100 -50 0 50 100 150 2,9 3,1 3,3 3,5 3,7 3,9 time(us) % i d v d fitted copyright vincotech 23 revision: 1
V23990-P768-A50-pm figure 8 output inverter fwd figure 9 output inverter fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 50 a p rec (100%) = 30,08 kw q rr (100%) = 12,53 c e rec (100%) = 6,03 mj t qrr = 1,00 s t erec = 1,00 s switching definitions output inverter t qrr -200 -150 -100 -50 0 50 100 150 2,9 3,1 3,3 3,5 3,7 3,9 4,1 4,3 % i d q rr time(us) -20 0 20 40 60 80 100 120 2,9 3,1 3,3 3,5 3,7 3,9 4,1 4,3 time(us) % p rec e rec t erec copyright vincotech 24 revision: 1
V23990-P768-A50-pm t j 150 c r gon 16  r goff 16  figure 1 igbt figure 2 igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of t don , t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = -15 v v ge (0%) = -15 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 35 a i c (100%) = 35 a t doff = 0,27 s t don = 0,09 s t eoff = 0,61 s t eon = 0,33 s figure 3 igbt figure 4 igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 35 a i c (100%) = 35 a t f = 0,13 s t r = 0,03 s switching definitions brake general conditions = = = i c10% v ge10% t don v ce3% -50 0 50 100 150 200 250 2,8 2,9 3 3,1 3,2 3,3 3,4 3,5 time(us) % i c v ce t eon v ge i c 1% v ce 90% v ge 90% -20 0 20 40 60 80 100 120 140 -0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 time (us) % t doff t eoff v ce i c v ge fitted i c10% i c 90% i c 60% i c 40% -20 0 20 40 60 80 100 120 0 0,1 0,2 0,3 0,4 0,5 0,6 time (us) % v ce i c t f i c10% i c90% -50 0 50 100 150 200 250 2,8 2,9 3 3,1 3,2 3,3 3,4 3,5 time(us) % t r v ce i c copyright vincotech 25 revision: 1
V23990-P768-A50-pm figure 5 igbt figure 6 igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 20,96 kw p on (100%) = 20,9586 kw e off (100%) = 3,18 mj e on (100%) = 2,92 mj t eoff = 0,61 s t eon = 0,3275 s figure 7 p fc fwd turn-off switching waveforms & definition of t rr v d (100%) = 600 v i d (100%) = 35 a i rrm (100%) = -39 a t rr = 0,42 s switching definitions brake i c 1% u ge90% -20 0 20 40 60 80 100 120 -0,2 0 0,2 0,4 0,6 0,8 time (us) % p off e off t eoff u ce 3% u ge10% -50 0 50 100 150 200 2,85 2,95 3,05 3,15 3,25 3,35 3,45 time(us) % p on e on t eon i rrm10% i rrm90% i rrm100% t rr -150 -100 -50 0 50 100 150 3 3,1 3,2 3,3 3,4 3,5 time(us) % i d u d fitted copyright vincotech 26 revision: 1
V23990-P768-A50-pm figure 8 pfc fwd figure 9 pfc fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 35 a p rec (100%) = 20,96 kw q rr (100%) = 4,84 c e rec (100%) = 1,98 mj t qint = 1,00 s t erec = 1,00 s switching definitions brake t qint -150 -100 -50 0 50 100 150 2,8 3 3,2 3,4 3,6 3,8 4 4,2 4,4 time(us) % i d q rr -25 0 25 50 75 100 125 2,8 3 3,2 3,4 3,6 3,8 4 4,2 4,4 time(us) % p rec e rec t erec copyright vincotech 27 revision: 1
V23990-P768-A50-pm version ordering code in datamatrix as in packaging barcode as without thermal paste 17mm housing V23990-P768-A50 p768-a50 p768-a50 outline pinout ordering code & marking ordering code and marking - outline - pinout copyright vincotech 28 revision: 1
V23990-P768-A50-pm disclaimer life support policy as used herein: 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. copyright vincotech 29 revision: 1


▲Up To Search▲   

 
Price & Availability of V23990-P768-A50

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X